Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Sci Rep ; 11(1): 24262, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930962

ABSTRACT

Bat-borne viruses in the Henipavirus genus have been associated with zoonotic diseases of high morbidity and mortality in Asia and Australia. In Africa, the Egyptian rousette bat species (Rousettus aegyptiacus) is an important viral host in which Henipavirus-related viral sequences have previously been identified. We expanded these findings by assessing the viral dynamics in a southern African bat population. A longitudinal study of henipavirus diversity and excretion dynamics identified 18 putative viral species circulating in a local population, three with differing seasonal dynamics, and the winter and spring periods posing a higher risk of virus spillover and transmission. The annual peaks in virus excretion are most likely driven by subadults and may be linked to the waning of maternal immunity and recolonization of the roost in early spring. These results provide insightful information into the bat-host relationship that can be extrapolated to other populations across Africa and be communicated to at-risk communities as a part of evidence-based public health education and prevention measures against pathogen spillover threats.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Marburgvirus/immunology , Paramyxoviridae/immunology , Seasons , Africa , Animals , Asia , Australia , Geography , Henipavirus , Humans , Longitudinal Studies , South Africa , Time Factors , Zoonoses/epidemiology , Zoonoses/virology
2.
Front Immunol ; 12: 774026, 2021.
Article in English | MEDLINE | ID: mdl-34777392

ABSTRACT

Marburg virus (MARV) is a member of the filovirus family that causes hemorrhagic disease with high case fatality rates. MARV is on the priority list of the World Health Organization for countermeasure development highlighting its potential impact on global public health. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the MARV glycoprotein (VSV-MARV) and previously demonstrated uniform protection of nonhuman primates (NHPs) with a single dose. Here, we investigated the fast-acting potential of this vaccine by challenging NHPs with MARV 14, 7 or 3 days after a single dose vaccination with VSV-MARV. We found that 100% of the animals survived when vaccinated 7 or 14 days and 75% of the animal survived when vaccinated 3 days prior to lethal MARV challenge. Transcriptional analysis of whole blood samples indicated activation of B cells and antiviral defense after VSV-MARV vaccination. In the day -14 and -7 groups, limited transcriptional changes after challenge were observed with the exception of day 9 post-challenge in the day -7 group where we detected gene expression profiles indicative of a recall response. In the day -3 group, transcriptional analysis of samples from surviving NHPs revealed strong innate immune activation. In contrast, the animal that succumbed to disease in this group lacked signatures of antiviral immunity. In summary, our data demonstrate that the VSV-MARV is a fast-acting vaccine suitable for the use in emergency situations like disease outbreaks in Africa.


Subject(s)
Marburg Virus Disease/prevention & control , Marburgvirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Chlorocebus aethiops , Cytokines/blood , Disease Models, Animal , Immunization , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Lymphocyte Activation , Marburg Virus Disease/blood , Marburg Virus Disease/immunology , Marburg Virus Disease/metabolism , Vaccination , Vero Cells , Vesiculovirus , Viral Load
3.
Front Immunol ; 12: 703986, 2021.
Article in English | MEDLINE | ID: mdl-34484200

ABSTRACT

Ebola (EBOV), Marburg (MARV) and Sudan (SUDV) viruses are the three filoviruses which have caused the most fatalities in humans. Transmission from animals into the human population typically causes outbreaks of limited scale in endemic regions. In contrast, the 2013-16 outbreak in several West African countries claimed more than 11,000 lives revealing the true epidemic potential of filoviruses. This is further emphasized by the difficulty seen with controlling the 2018-2020 outbreak of EBOV in the Democratic Republic of Congo (DRC), despite the availability of two emergency use-approved vaccines and several experimental therapeutics targeting EBOV. Moreover, there are currently no vaccine options to protect against the other epidemic filoviruses. Protection of a monovalent EBOV vaccine against other filoviruses has never been demonstrated in primate challenge studies substantiating a significant void in capability should a MARV or SUDV outbreak of similar magnitude occur. Herein we show progress on developing vaccines based on recombinant filovirus glycoproteins (GP) from EBOV, MARV and SUDV produced using the Drosophila S2 platform. The highly purified recombinant subunit vaccines formulated with CoVaccine HT™ adjuvant have not caused any safety concerns (no adverse reactions or clinical chemistry abnormalities) in preclinical testing. Candidate formulations elicit potent immune responses in mice, guinea pigs and non-human primates (NHPs) and consistently produce high antigen-specific IgG titers. Three doses of an EBOV candidate vaccine elicit full protection against lethal EBOV infection in the cynomolgus challenge model while one of four animals infected after only two doses showed delayed onset of Ebola Virus Disease (EVD) and eventually succumbed to infection while the other three animals survived challenge. The monovalent MARV or SUDV vaccine candidates completely protected cynomolgus macaques from infection with lethal doses of MARV or SUDV. It was further demonstrated that combinations of MARV or SUDV with the EBOV vaccine can be formulated yielding bivalent vaccines retaining full efficacy. The recombinant subunit vaccine platform should therefore allow the development of a safe and efficacious multivalent vaccine candidate for protection against Ebola, Marburg and Sudan Virus Disease.


Subject(s)
Ebola Vaccines/pharmacology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Marburg Virus Disease/prevention & control , Marburgvirus/immunology , Animals , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Humans , Macaca fascicularis , Marburg Virus Disease/epidemiology , Marburg Virus Disease/genetics , Marburg Virus Disease/immunology , Marburgvirus/genetics , Vaccines, Synthetic
4.
Viruses ; 13(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209295

ABSTRACT

Ebolaviruses and marburgviruses are filoviruses that are known to cause severe hemorrhagic fever in humans and nonhuman primates (NHPs). While some bat species are suspected to be natural reservoirs of these filoviruses, wild NHPs often act as intermediate hosts for viral transmission to humans. Using an enzyme-linked immunosorbent assay, we screened two NHP species, wild baboons and vervet monkeys captured in Zambia, for their serum IgG antibodies specific to the envelope glycoproteins of filoviruses. From 243 samples tested, 39 NHPs (16%) were found to be seropositive either for ebolaviruses or marburgviruses with endpoint antibody titers ranging from 100 to 25,600. Interestingly, antibodies reactive to Reston virus, which is found only in Asia, were detected in both NHP species. There was a significant difference in the seropositivity for the marburgvirus antigen between the two NHP species, with baboons having a higher positive rate. These results suggest that wild NHPs in Zambia might be nonlethally exposed to these filoviruses, and this emphasizes the need for continuous monitoring of filovirus infection in wild animals to better understand the ecology of filoviruses and to assess potential risks of outbreaks in humans in previously nonendemic countries.


Subject(s)
Antibodies, Viral/blood , Filoviridae Infections/immunology , Filoviridae Infections/veterinary , Filoviridae/immunology , Primates/virology , Animals , Animals, Wild/virology , Chlorocebus aethiops/virology , Ebolavirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Filoviridae/classification , Filoviridae/isolation & purification , Filoviridae Infections/epidemiology , Humans , Immunoglobulin G/blood , Male , Marburgvirus/immunology , Papio/virology , Seroepidemiologic Studies , Zambia/epidemiology
5.
Viruses ; 13(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33673603

ABSTRACT

The emergence of multiple concurrent infectious diseases localized in the world creates a complex burden on global public health systems. Outbreaks of Ebola, Lassa, and Marburg viruses in overlapping regions of central and West Africa and the co-circulation of Zika, Dengue, and Chikungunya viruses in areas with A. aegypti mosquitos highlight the need for a rapidly deployable, safe, and versatile vaccine platform readily available to respond. The DNA vaccine platform stands out as such an application. Here, we present proof-of-concept studies from mice, guinea pigs, and nonhuman primates for two multivalent DNA vaccines delivered using in vivo electroporation (EP) targeting mosquito-borne (MMBV) and hemorrhagic fever (MHFV) viruses. Immunization with MMBV or MHFV vaccines via intradermal EP delivery generated robust cellular and humoral immune responses against all target viral antigens in all species. MMBV vaccine generated antigen-specific binding antibodies and IFNγ-secreting lymphocytes detected in NHPs up to six months post final immunization, suggesting induction of long-term immune memory. Serum from MHFV vaccinated NHPs demonstrated neutralizing activity in Ebola, Lassa, and Marburg pseudovirus assays indicating the potential to offer protection. Together, these data strongly support and demonstrate the versatility of DNA vaccines as a multivalent vaccine development platform for emerging infectious diseases.


Subject(s)
Culicidae/virology , Ebolavirus/immunology , Vaccines, Combined/immunology , Vaccines, DNA/immunology , Africa, Western , Animals , Antibodies, Viral/immunology , Arenaviruses, New World/immunology , Dengue Virus/immunology , Epidemics , Female , Guinea Pigs , Hemorrhagic Fever, Ebola/immunology , Immunity, Humoral/immunology , Immunization/methods , Lassa Fever/immunology , Marburgvirus/immunology , Mice , Mice, Inbred C57BL , Vaccination/methods , Viral Vaccines/immunology , Zika Virus/immunology , Zika Virus Infection/immunology
6.
Bull Exp Biol Med ; 170(4): 475-478, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33713231

ABSTRACT

The preparation and study of the biological properties of the pVAKS-GPVM DNA immunogen containing a gene encoding Marburgvirus glycoprotein are described. The specificity of blood serum antibodies of guinea pigs immunized with DNA immunogen was analyzed by ELISA. Inactivated viral preparation, recombinant glycoprotein (GP) obtained in the prokaryotic system and virus-like particles based on the recombinant vesicular stomatitis virus exhibiting Marburgvirus GP were used as the antigens. The neutralizing activity of antibodies of immunized animals was tested in vitro using a pseudovirus system. It was demonstrated that the developed immunogen administered to guinea pigs induced the production of specific antibodies that neutralize virus-like particles and Marburgvirus in cultured Vero cells.


Subject(s)
Marburgvirus/pathogenicity , Vaccines, DNA/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Enzyme-Linked Immunosorbent Assay , Glycoproteins/immunology , Glycoproteins/metabolism , Immunoglobulins/immunology , Immunoglobulins/metabolism , Marburgvirus/immunology , Viral Proteins/immunology , Viral Proteins/metabolism
7.
J Infect Dis ; 224(6): 995-1004, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33421072

ABSTRACT

BACKGROUND: The objective of this study is to evaluate the immunogenicity of adjuvanted monovalent rabies virus (RABV)-based vaccine candidates against Ebola virus (FILORAB1), Sudan virus (FILORAB2), Marburg virus (FILORAB3), Lassa virus (LASSARAB1), and combined trivalent vaccine candidate (FILORAB1-3) and tetravalent vaccine candidate (FILORAB1-3 and LASSARAB) in nonhuman primates. METHODS: Twenty-four Macaca fascicularis were randomly assigned into 6 groups of 4 animals. Each group was vaccinated with either a single adjuvanted vaccine, the trivalent vaccine, or the tetravalent vaccine at days 0 and 28. We followed the humoral immune responses for 1 year by antigen-specific enzyme-linked immunosorbent assays and RABV neutralization assays. RESULTS: High titers of filovirus and/or Lassa virus glycoprotein-specific immunoglobulin G were induced in the vaccinated animals. There were no significant differences between immune responses in animals vaccinated with single vaccines vs trivalent or tetravalent vaccines. In addition, all vaccine groups elicited strong rabies neutralizing antibody titers. The antigen-specific immune responses were detectable for 1 year in all groups. CONCLUSIONS: In summary, this study shows the longevity of the immune responses up to 365 days for a pentavalent vaccine-against Ebola virus, Sudan virus, Marburg virus, Lassa virus, and RABV-using a safe and effective vaccine platform.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Lassa Fever , Lassa virus , Rabies Vaccines , Rabies , Animals , Antibodies, Viral/blood , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Lassa Fever/prevention & control , Lassa virus/immunology , Macaca fascicularis , Marburgvirus/immunology , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Vaccines, Combined
8.
Curr Biol ; 31(2): 257-270.e5, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33157026

ABSTRACT

Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation ("cytokine storm"), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.


Subject(s)
Chiroptera/immunology , Disease Reservoirs/virology , Immune Tolerance/immunology , Marburg Virus Disease/immunology , Marburgvirus/immunology , Animals , Asymptomatic Infections , Chiroptera/blood , Chiroptera/genetics , Chiroptera/virology , Female , Gene Expression Regulation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance/genetics , Male , Marburg Virus Disease/virology , Monocytes/immunology
9.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229516

ABSTRACT

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Subject(s)
Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Marburg Virus Disease/immunology , Marburgvirus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Complementarity Determining Regions/immunology , Epitopes/genetics , Epitopes/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Marburg Virus Disease/drug therapy , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Marburgvirus/pathogenicity , Mutation/genetics , Mutation/immunology , Viral Envelope Proteins , Viral Vaccines/genetics , Viral Vaccines/immunology
10.
J Pharm Sci ; 109(12): 3716-3727, 2020 12.
Article in English | MEDLINE | ID: mdl-32931778

ABSTRACT

The filoviruses Zaire ebolavirus (EBOV), Marburg marburgvirus (MARV), and Sudan ebolavirus (SUDV) are some of the most lethal infectious agents known. To date, the Zaire ebolavirus vaccine (ERVEBO®) is the only United States Food and Drug Administration (FDA) approved vaccine available for any species of filovirus. However, the ERVEBO® vaccine requires cold-chain storage not to exceed -60 °C. Such cold-chain requirements are difficult to maintain in low- and middle-income countries where filovirus outbreaks originate. To improve the thermostability of filovirus vaccines in order to potentially relax or eliminate these cold-chain requirements, monovalent subunit vaccines consisting of glycoproteins from EBOV, MARV, and SUDV were stabilized within amorphous disaccharide glasses through lyophilization. Lyophilized formulations and liquid controls were incubated for up to 12 weeks at 50 °C to accelerate degradation. To identify a stability-indicating assay appropriate for monitoring protein degradation and immunogenicity loss during these accelerated stability studies, filovirus glycoprotein secondary, tertiary, and quaternary structures and vaccine immunogenicity were measured. Size-exclusion chromatography was the most sensitive indicator of glycoprotein stability in the various formulations for all three filovirus immunogens. Degradation of the test vaccines during accelerated stability studies was reflected in changes in quaternary structure, which were discernible with size-exclusion chromatography. Filovirus glycoproteins in glassy lyophilized formulations retained secondary, tertiary, and quaternary protein structure over the incubation period, whereas the proteins within liquid controls both aggregated to form higher molecular weight species and dissociated from their native quaternary structure to form a variety of structurally-perturbed lower molecular weight species.


Subject(s)
Ebolavirus , Glycoproteins , Hemorrhagic Fever, Ebola , Marburgvirus , Vaccines , Ebolavirus/immunology , Marburgvirus/immunology
11.
Int J Infect Dis ; 99: 233-242, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32758690

ABSTRACT

OBJECTIVES: This article summarizes the countermeasures for Marburg virus disease, focusing on pathogenesis, clinical features and diagnostics. There is an emphasis on therapies and vaccines that have demonstrated, through their evaluation in nonhuman primates (NHPs) and/or in humans, potential for use in an emergency situation. METHODS: A standardized literature review was conducted on vaccines and treatments for Marburg virus disease, with a focus on human and nonhuman primate data published in the last five years. More detail on the methods that were used is summarized in a companion methods paper. RESULTS: The study identified six treatments and four vaccine platforms that have demonstrated, through their efficacy in NHPs, potential benefit for treating or preventing infection in humans. CONCLUSION: Succinct summaries of Marburg countermeasures are provided to give the busy clinician a head start in reviewing the literature if faced with a patient with Marburg virus disease. Links to other authoritative sources of information are also provided.


Subject(s)
Marburg Virus Disease/therapy , Animals , Humans , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Marburg Virus Disease/virology , Marburgvirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
12.
BMC Infect Dis ; 20(1): 461, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611400

ABSTRACT

BACKGROUND: Uganda has experienced seven Ebola Virus Disease (EVD) outbreaks and four Marburg Virus Disease (MVD) outbreaks between 2000 and 2019. We investigated the seroprevalence and risk factors for Marburg virus and ebolaviruses in gold mining communities around Kitaka gold mine in Western Uganda and compared them to non-mining communities in Central Uganda. METHODS: A questionnaire was administered and human blood samples were collected from three exposure groups in Western Uganda (gold miners, household members of miners, non-miners living within 50 km of Kitaka mine). The unexposed controls group sampled was community members in Central Uganda far away from any gold mining activity which we considered as low-risk for filovirus infection. ELISA serology was used to analyse samples, detecting IgG antibodies against Marburg virus and ebolaviruses (filoviruses). Data were analysed in STATA software using risk ratios and odds ratios. RESULTS: Miners in western Uganda were 5.4 times more likely to be filovirus seropositive compared to the control group in central Uganda (RR = 5.4; 95% CI 1.5-19.7) whereas people living in high-risk areas in Ibanda and Kamwenge districts were 3.6 more likely to be seropositive compared to control group in Luweeero district (RR = 3.6; 95% CI 1.1-12.2). Among all participants, filovirus seropositivity was 2.6% (19/724) of which 2.3% (17/724) were reactive to Sudan virus only and 0.1% (1/724) to Marburg virus. One individual seropositive for Sudan virus also had IgG antibodies reactive to Bundibugyo virus. The risk factors for filovirus seropositivity identified included mining (AOR = 3.4; 95% CI 1.3-8.5), male sex (AOR = 3.1; 95% CI 1.01-9.5), going inside mines (AOR = 3.1; 95% CI 1.2-8.2), cleaning corpses (AOR = 3.1; 95% CI 1.04-9.1) and contact with suspect filovirus cases (AOR = 3.9, 95% CI 1.04-14.5). CONCLUSIONS: These findings indicate that filovirus outbreaks may go undetected in Uganda and people involved in artisan gold mining are more likely to be exposed to infection with either Marburg virus or ebolaviruses, likely due to increased risk of exposure to bats. This calls for active surveillance in known high-risk areas for early detection and response to prevent filovirus epidemics.


Subject(s)
Disease Outbreaks , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Marburg Virus Disease/diagnosis , Marburg Virus Disease/epidemiology , Marburgvirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Chiroptera/virology , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/blood , Humans , Male , Marburg Virus Disease/blood , Middle Aged , Miners , Retrospective Studies , Seroepidemiologic Studies , Uganda/epidemiology , Young Adult
13.
Cell Host Microbe ; 27(6): 856-858, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32526181

ABSTRACT

Human monoclonal antibodies are immune weapons that hold great promise for treating Marburg virus (MARV) infection. In this issue, Ilinykh et al. unveil non-neutralizing inhibitory properties of antibodies to the Wing region of the viral spike, which alongside with neutralizers are pivotal to in vivo protection against MARV infection.


Subject(s)
Marburg Virus Disease , Marburgvirus/immunology , Animals , Antibodies, Monoclonal , Antibodies, Viral , Humans , Survivors
14.
Cell Host Microbe ; 27(6): 976-991.e11, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32320678

ABSTRACT

Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Marburg Virus Disease/immunology , Marburgvirus/immunology , Animals , Antibodies, Monoclonal/immunology , B-Lymphocytes , Chlorocebus aethiops , Disease Models, Animal , Ebolavirus/immunology , Epitopes/immunology , Female , Glycoproteins/immunology , Guinea Pigs , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Survivors , THP-1 Cells , Vero Cells , Viral Envelope Proteins/immunology
15.
Front Immunol ; 11: 435, 2020.
Article in English | MEDLINE | ID: mdl-32231668

ABSTRACT

Bats host a number of viruses that cause severe disease in humans without experiencing overt symptoms of disease themselves. While the mechanisms underlying this ability to avoid sickness are not known, deep sequencing studies of bat genomes have uncovered genetic adaptations that may have functional importance in the antiviral response of these animals. Egyptian rousette bats (Rousettus aegyptiacus) are the natural reservoir hosts of Marburg virus (MARV). In contrast to humans, these bats do not become sick when infected with MARV. A striking difference to the human genome is that Egyptian rousettes have an expanded repertoire of IFNW genes. To probe the biological implications of this expansion, we synthesized IFN-ω4 and IFN-ω9 proteins and tested their antiviral activity in Egyptian rousette cells. Both IFN-ω4 and IFN-ω9 showed antiviral activity against RNA viruses, including MARV, with IFN-ω9 being more efficient than IFN-ω4. Using RNA-Seq, we examined the transcriptional response induced by each protein. Although the sets of genes induced by the two IFNs were largely overlapping, IFN-ω9 induced a more rapid and intense response than did IFN-ω4. About 13% of genes induced by IFN-ω treatment are not found in the Interferome or other ISG databases, indicating that they may be uniquely IFN-responsive in this bat.


Subject(s)
Antiviral Agents/metabolism , Chiroptera/immunology , Disease Reservoirs/virology , Interferon Type I/metabolism , Marburg Virus Disease/immunology , Marburgvirus/immunology , Viral Zoonoses/immunology , Animals , Antibodies, Viral/blood , Chiroptera/virology , Host-Pathogen Interactions , Humans , Interferon Type I/genetics , Transcription, Genetic
16.
Sci Rep ; 10(1): 3071, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080323

ABSTRACT

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.


Subject(s)
Marburg Virus Disease/immunology , Marburg Virus Disease/virology , Marburgvirus/immunology , Post-Exposure Prophylaxis , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Cytokines/blood , Cytotoxicity, Immunologic , Dose-Response Relationship, Immunologic , Down-Regulation/genetics , Female , Inflammation/blood , Inflammation/immunology , Interferons/genetics , Interferons/metabolism , Killer Cells, Natural/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Marburg Virus Disease/blood , Marburg Virus Disease/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic/genetics , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Transcriptome/genetics , Up-Regulation/genetics , Vesiculovirus/genetics , Viral Load/immunology
17.
Emerg Microbes Infect ; 9(1): 124-128, 2020.
Article in English | MEDLINE | ID: mdl-31913767

ABSTRACT

A serological survey of 2,430 archived serum samples collected between 1997 and 2012 was conducted to retrospectively determine the prevalence of Marburg virus in five African countries. Serum samples were screened for neutralizing antibodies in a pseudotype micro-neutralization assay and confirmed by enzyme-linked immunosorbent assay (ELISA). Surprisingly, a seroprevalence for Marburg virus of 7.5 and 6.3% was found in Cameroon and Ghana, respectively, suggesting the circulation of filoviruses or related viruses outside of known endemic areas that remain undetected by current surveillance efforts. However, due to the lack of validated assays and appropriate positive controls, these results must be considered preliminary.


Subject(s)
Antibodies, Viral/blood , Filoviridae/immunology , Marburg Virus Disease/blood , Marburg Virus Disease/epidemiology , Marburgvirus/immunology , Animals , Cameroon/epidemiology , Enzyme-Linked Immunosorbent Assay , Filoviridae/genetics , Filoviridae Infections/blood , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Ghana/epidemiology , Humans , Marburg Virus Disease/virology , Marburgvirus/genetics , Retrospective Studies , Seroepidemiologic Studies
18.
mSphere ; 4(6)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801842

ABSTRACT

Dysregulated and maladaptive immune responses are at the forefront of human diseases caused by infection with zoonotic viral hemorrhagic fever viruses. Elucidating mechanisms of how the natural animal reservoirs of these viruses coexist with these agents without overt disease, while permitting sufficient replication to allow for transmission and maintenance in a population, is important for understanding the viral ecology and spillover to humans. The Egyptian rousette bat (ERB) has been identified as a reservoir for Marburg virus (MARV), a filovirus and the etiological agent of the highly lethal Marburg virus disease. Little is known regarding how these bats immunologically respond to MARV infection. In humans, macrophages and dendritic cells (DCs) are primary targets of infection, and their dysregulation is thought to play a central role in filovirus diseases, by disturbing their normal functions as innate sensors and adaptive immune response facilitators while serving as amplification and dissemination agents for the virus. The infection status and responses to MARV in bat myeloid-lineage cells are uncharacterized and likely represent an important modulator of the bat's immune response to MARV infection. Here, we generate DCs from the bone marrow of rousette bats. Infection with a bat isolate of MARV resulted in a low level of transcription in these cells and significantly downregulated DC maturation and adaptive immune-stimulatory pathways while simultaneously upregulating interferon-related pathogen-sensing pathways. This study provides a first insight into how the bat immune response is directed toward preventing aberrant inflammatory responses while mounting an antiviral response to defend against MARV infection.IMPORTANCE Marburg viruses (MARVs) cause severe human disease resulting from aberrant immune responses. Dendritic cells (DCs) are primary targets of infection and are dysregulated by MARV. Dysregulation of DCs facilitates MARV replication and virus dissemination and influences downstream immune responses that result in immunopathology. Egyptian rousette bats (ERBs) are natural reservoirs of MARV, and infection results in virus replication and shedding, with asymptomatic control of the virus within weeks. The mechanisms that bats employ to appropriately respond to infection while avoiding disease are unknown. Because DC infection and modulation are important early events in human disease, we measured the transcriptional responses of ERB DCs to MARV. The significance of this work is in identifying cell type-specific coevolved responses between ERBs and MARV, which gives insight into how bat reservoirs are able to harbor MARV and permit viral replication, allowing transmission and maintenance in the population while simultaneously preventing immunopathogenesis.


Subject(s)
Chiroptera/immunology , Chiroptera/virology , Dendritic Cells/immunology , Dendritic Cells/virology , Host-Pathogen Interactions , Interferons/metabolism , Marburgvirus/immunology , Animals , Cells, Cultured , Gene Expression Regulation , Immunity, Innate , Immunologic Factors/metabolism , Marburgvirus/growth & development
19.
Hum Vaccin Immunother ; 15(10): 2359-2377, 2019.
Article in English | MEDLINE | ID: mdl-31589088

ABSTRACT

The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Marburg Virus Disease/prevention & control , Marburgvirus/immunology , Viral Vaccines/immunology , Animals , Clinical Trials as Topic , Disease Models, Animal , Disease Outbreaks , Ebolavirus/genetics , Genetic Vectors , Humans , Vaccines, DNA/immunology , Viral Vaccines/genetics
20.
Viruses ; 11(9)2019 08 24.
Article in English | MEDLINE | ID: mdl-31450611

ABSTRACT

Following the Ebola outbreak in Western Africa in 2013-16, a global effort has taken place for preparedness for future outbreaks. As part of this response, the development of vaccines, treatments and diagnostic tools has been accelerated, especially towards pathogens listed as likely to cause an epidemic and for which there are no current treatments. Several of the priority pathogens identified by the World Health Organisation are haemorrhagic fever viruses. This review provides information on the role of reference materials as an enabling tool for the development and evaluation of assays, and ultimately vaccines and treatments. The types of standards available are described, along with how they can be applied for assay harmonisation through calibration as a relative potency to a common arbitrary unitage system (WHO International Unit). This assures that assay metrology is accurate and robust. We describe reference materials that have been or are being developed for haemorrhagic fever viruses and consider the issues surrounding their production, particularly that of biosafety where the viruses require specialised containment facilities. Finally, we advocate the use of reference materials at early stages, including research and development, as this helps produce reliable assays and can smooth the path to regulatory approval.


Subject(s)
Diagnostic Techniques and Procedures , Hemorrhagic Fever, Ebola , Information Services , RNA Virus Infections , Vaccines/standards , Africa, Western/epidemiology , Animals , Antigens, Viral/blood , Dengue Virus/immunology , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Disease Outbreaks/prevention & control , Ebolavirus/immunology , Ebolavirus/isolation & purification , Ebolavirus/pathogenicity , Epidemics/prevention & control , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/immunology , Hemorrhagic Fever, Crimean/prevention & control , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Lassa Fever/diagnosis , Lassa Fever/immunology , Lassa Fever/prevention & control , Lassa virus/immunology , Lassa virus/isolation & purification , Lassa virus/pathogenicity , Marburg Virus Disease/diagnosis , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Marburgvirus/immunology , Marburgvirus/isolation & purification , Marburgvirus/pathogenicity , RNA Virus Infections/diagnosis , RNA Virus Infections/immunology , RNA Virus Infections/prevention & control , RNA Viruses/immunology , RNA Viruses/isolation & purification , RNA Viruses/pathogenicity , RNA, Viral/isolation & purification , Rift Valley Fever/diagnosis , Rift Valley Fever/immunology , Rift Valley Fever/prevention & control , Rift Valley fever virus/immunology , Rift Valley fever virus/isolation & purification , Rift Valley fever virus/pathogenicity , Severe Dengue/diagnosis , Severe Dengue/immunology , Severe Dengue/prevention & control , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...